Sustainable small-scale biogas production from agro-food waste for energy self-sufficiency

English Live-Webinar, 17th September 2015

Gavigan, Noel
IrBEA Ltd.

Hartmann, Katharina
Renewables Academy (RENAC) AG

Legal disclaimer: The sole responsibility for the content of this publication lies with the authors. It does not necessarily reflect the opinion of the European Union. Neither the EACI nor the European Commission are responsible for any use that may be made of the information contained therein.
Welcome to the BIOGAS³ Webinar

Before we start, please note the following:

– Make sure your headset or loudspeakers are connected properly, so you can hear the presenters speak

– You do not need a webcam, videos take up too much bandwidth

– Only the presenter will speak, all participant’s microphones will be muted.

– Please use the chat in the lower right corner to leave messages in the chat. RENAC staff will answer your questions as soon as possible
Agenda

1. Introduction BIOGAS3
2. Project results
3. Project services
4. Functionality of Online Training
About BIOGAS³

- Biogas3 implemented within the EU-Programme Intelligent Energy Europe, aiming to promote renewable energies through small scale biogas plants in agro-food industries for self-consumption

Contribution to secure, sustainable and competitively priced energy for Europe by promoting new and renewable energy sources and supporting energy diversification.
The team of BIOGAS³

Partner Organisations:
AINIA, FIAB (Spain)
ACTIA, IFIP (France)
TCA, DEIAFA (Italy)
RENAC (Germany)
FUNDEKO (Poland)
JTI (Sweden)
IrBEA (Ireland)
About BIOGAS³

1. Management
2. Business Collaboration Models
3. Small-scale AD models
4. Build-up of skills, awareness and networking
5. Face-to-face activities
6. Communication
7. Dissemination Activities

www.biogas3.eu
Background of BIOGAS³

• 20-20-20 goals of the EU
• Characterization of agro-food industry:
 – Industry with high amounts of residues
 – Residues need to be transported, reutilized or disposed
 – Subject to national regulations due to hygiene, restrictions etc.
 – Mostly waste management is combined with high costs for company
What is biogas?

• Organic material is decomposed to Biogas under the absence of oxygen.

• Anaerobic Digestion is a complex micobiological process (does also occur in nature: rumen of cows, wetlands).

• The climate damaging effect of methane is 21 times higher than of CO2 (Biogas consists of 50 – 70 % methane).

• Produced forms of energy:
 – electricity
 – heat
 – vehicle fuel
Which materials can produce biogas?

- **Agricultural waste**
 - Animal slurries
 - Harvest residues
 - Grass

- **Food processing waste**
 - Meat/fish processing waste
 - Dairy waste
 - Brewery spent grains
 - Vegetable waste
 - Waste from prepared food factories
 - Sludge from waste water treatment plants
Potential Substrates

<table>
<thead>
<tr>
<th>Substrate</th>
<th>DM</th>
<th>Biogas yield</th>
<th>Methane-content</th>
<th>Primary energy</th>
<th>Electricity (net) 35%</th>
<th>Heat (net) 90%</th>
<th>Value Electricity</th>
<th>Value Heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pig manure</td>
<td>6</td>
<td>20</td>
<td>60</td>
<td>120</td>
<td>42</td>
<td>108</td>
<td>6.72 €</td>
<td>5.40 €</td>
</tr>
<tr>
<td>Whey</td>
<td>8.5</td>
<td>58.5</td>
<td>53</td>
<td>310</td>
<td>109</td>
<td>279</td>
<td>17.44 €</td>
<td>13.95 €</td>
</tr>
<tr>
<td>Brewer’s yeast</td>
<td>25</td>
<td>152</td>
<td>62</td>
<td>942</td>
<td>330</td>
<td>848</td>
<td>52.77 €</td>
<td>42.39 €</td>
</tr>
<tr>
<td>Potato slip</td>
<td>19</td>
<td>108</td>
<td>54</td>
<td>540</td>
<td>189</td>
<td>486</td>
<td>30.24 €</td>
<td>24.30 €</td>
</tr>
<tr>
<td>Slaughterwastes</td>
<td>15</td>
<td>60</td>
<td>55</td>
<td>300</td>
<td>105</td>
<td>270</td>
<td>16.80 €</td>
<td>13.50 €</td>
</tr>
<tr>
<td>Residues from bakeries</td>
<td>77</td>
<td>570</td>
<td>53</td>
<td>3021</td>
<td>1027</td>
<td>2719</td>
<td>169.18 €</td>
<td>135.95 €</td>
</tr>
<tr>
<td>Maize silage</td>
<td>35</td>
<td>216</td>
<td>52</td>
<td>1123</td>
<td>393</td>
<td>1011</td>
<td>62.88 €</td>
<td>50.54 €</td>
</tr>
</tbody>
</table>
How can AD technology support agro-food companies?

• Recycling organic residues → time and cost savings

• Providing company with own produced electricity and heat
 – Covering energy demand of company and contributing to energy self-sufficiency of company
 – Improving company’s energy efficiency
 – Independence of energy providers and market prices (e.g. feed-in tariffs)
 – Reduction of energy costs
 – Sustainability of processes
AD implemented in agro-food industry
A holistic approach
Example of a farm small-scale biogas plant

Dairy farm, Gießen (Germany)

Small-scale biogas plant (installed capacity 75 kW).
Feedstocks: cattle slurry (10,950 m³/year)
Energy use: heat for self-consumption, electrical energy is fed into local power grid

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Digester:</td>
<td>600 m³</td>
</tr>
<tr>
<td>Biogas valorisation unit:</td>
<td>75 kW boiler</td>
</tr>
<tr>
<td>Energy production:</td>
<td>630 MWhel/a; 740 MWhth/a</td>
</tr>
<tr>
<td>Investment:</td>
<td>€500,000,--</td>
</tr>
</tbody>
</table>

Estimated payback period = 6 years

Data obtained from a report of Bio4Gas GmbH
Example of a farm small-scale biogas plant

Fahringer farm, Rettenschöss (Austria)

Small-scale biogas plant (self-built, low-cost).

Feedstocks: whey, cattle slurry (from 50 cows)

Energy use: Heat for the housing and the cheese plant

<table>
<thead>
<tr>
<th>Digester:</th>
<th>150m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas valorisation unit:</td>
<td>50kW boiler</td>
</tr>
<tr>
<td>Gas production:</td>
<td>150-180m³ biogas/day</td>
</tr>
<tr>
<td>Investment:</td>
<td>€35,000,--</td>
</tr>
</tbody>
</table>

Data obtained from a report of BIOREGIONS project (www.bioregions.eu)

Estimated payback period = 7 years
Example of a farm small-scale biogas plant

Methanogen, Waterford

Feedstocks: waste water treatment sludge waste
Energy use: Heat to heat digester and to heat domestic house

Built 1992 – running ever since

Digester: 2 x 70m³ insulated concrete tanks, Fibreglass top
Biogas valorisation unit: 50kW heat output, running 24h/d
Energy production: 1,200kWh/day
Investment: €35,000,–, payback period: 6 years
University of Southampton Science Park (UK)

Small-scale biogas plant, containerized

Feedstocks: 410 l/d of kitchen food waste, cooking oil and spent alcoholic drinks

Energy use: Electricity and heat used in the business park offices and research labs

<table>
<thead>
<tr>
<th>Biogas valorisation unit:</th>
<th>8 kW CHP engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biogas production:</td>
<td>46 m3/d</td>
</tr>
<tr>
<td>Electricity production:</td>
<td>35 MWh/a</td>
</tr>
<tr>
<td>Investment:</td>
<td>€ 120.000,--</td>
</tr>
</tbody>
</table>

Annual operation and maintenance costs:	6.000 €
Energy savings:	3.380 €
Heat savings:	1.810 €
Waste management savings:	12.470 €
Digestate value:	1.170 €

Payback period: 4 years (with feed-in tariffs). Estimated 9 years without feed-in tariffs.
What can BIOGAS³ do for me?

- **Free training courses & workshops**
 - On-line and face-to-face
 - Choice of basic courses, specialised workshops, webinars...

- **Personalised feasibility studies**
 - With the software smallBIOGAS, to check if your feedstock and site are suitable for a small-scale biogas plant.

- **Networking and one-to-one activities**
 - Contact to specialised biogas plant technologists and technology centres that will help you to outline the best project

- **Implementation of new small-scale biogas plants**
1. General data
 - Name: [Enter name]
 - Country: Ireland, Spain, France, Italy, Germany, Poland, Ireland, Sweden

2. Administrative division
 - Munster

3. Annual average temperature (°C):
 - 9.5

The results obtained from the use of the tool provide to the user an orientation about the viability of a small-scale biogas plant. For this reason, the authors recommend further consultation with expert centres before carrying out a project of biogas plant and are not responsible for any damages resulting from the use made of the tool smallBIOGAS.
Online Training
1. Log-in
 - visit www.renewables-online.de (works best with Firefox and Google Chrome)
 - Access data has been provided (username = email address, password in email, has to be changed by you when you have logged in for the first time)

2. Profile settings
 - Personalize your profile settings
 - In this section you can also
 - upload your profile picture
 - set your local time
 - change your password
 - change messaging settings
 - change the language of the platform menus
 (please note: this will not change the language of course content)
3. Structure of the BIOGAS3 Online Training
 - Six chapters with respective subchapters

4. Change chapters via the table of contents or via the arrows at the side of the screen page
5. **Forum**

- One forum for organisational issues, where participants can ask any question regarding the functioning or organisation of the online course.
- One forum for discussion of the course content, regarding learning material and exchange of experiences with BIOGAS3 staff and other participants.
Online Training

6. Exam
 - To obtain a BIOGAS3 certificate participants can take a short (20min) exam (passing mark: 70%).
 - In January, participants will be asked if they would like to participate in a test
 - In case of positive answers, the test will be offered in the respective languages

7. Evaluation
 - We will distribute an online questionnaire in all languages to participants, to evaluate the Online Training at the end
Thank you for your attention